La definición general de función hace referencia a la dependencia entre los elementos de dos conjuntos dados.
· Se dice que el dominio de una función son todos los valores que puede tomar el conjunto del dominio y que encuentra correspondencia en el conjunto llamado codominio, generalmente cuando se habla del plano, el dominio es el intervalo de valores que están sobre el eje de las X´s y que nos generan una asociación en el eje de las Y´s.
Las funciones se pueden presentar de distintas maneras:
- usando una relación matemática descrita mediante una expresión matemática: ecuaciones de la forma y = f(x). Cuando la relación es funcional, es decir satisface la segunda condición de la definición de función, se puede definir una función que se dice definida por la relación, A menos que se indique lo contrario, se supone en tales casos que el dominio es el mayor posible (respecto a inclusión) y que el codominio son todos los Reales. El dominio seleccionado se llama el dominio natural, de la función.
Ejemplo: y=x+2. Dominio natural es todos los reales.
Ejemplo: "Para todo x, número entero, y vale x más dos unidades".
- Como tabulación: tabla que permite representar algunos valores discretos de la función.
- Como pares ordenados: pares ordenados, muy usados en teoría de grafos.
Ejemplo: A={(-2, 0),(-1, 1),(0, 2),(1, 3),... (x, x+2)}
- Como gráfica: gráfica que permite visualizar las tendencias en la función. Muy utilizada para las funciones continuas típicas del cálculo, aunque también las hay para funciones discretas.
Ejemplo:
5 | X | |||||
4 | X | |||||
3 | X | |||||
2 | X | |||||
1 | X | |||||
0 | X | |||||
y / x | -2 | -1 | 0 | 1 | 2 | 3 |
Clasificación de funciones
Funciones algebraicas
En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción, multiplicación, división, potenciación y radicación.
Las funciones algebraicas pueden ser:
Funciones explícitas
En las funciones explícitas se pueden obtener las imágenes de x por simple sustitución.
f(x) = 5x - 2
Funciones implícitas
En las funciones implícitas no se pueden obtener las imágenes de x por simple sustitución, sino que es preciso efectuar operaciones.
5x - y - 2 = 0
Funciones polinómicas
Las funciones polinómicas vienen definidas por un polinomio.
f(x) = a0 + a1 x + a1 x² + a1 x³ +··· + an xn
Su dominio es , es decir, cualquier número real tiene imagen.
Funciones constantes
El criterio viene dado por un número real.
f(x)= k
La gráfica es una recta horizontal paralela a al eje de abscisas.
Funciones polinómica de primer grado
f(x) = mx +n
Su gráfica es una recta oblicua, que queda definida por dos puntos de la función.
Funciones cuadráticas
f(x) = ax² + bx +c
Son funciones polinómicas es de segundo grado, siendo su gráfica una parábola.
Funciones a trozos
Son funciones definidas por distintos criterios, según los intervalos que se consideren.
Funciones racionales
El criterio viene dado por un cociente entre polinomio:
El dominio lo forman todos los números reales excepto los valores de x que anulan el denominador.
Funciones radicales
El criterio viene dado por la variable x bajo el signo radical.
El dominio de una función irracional de índice impar es R.
El dominio de una función irracional de índice par está formado por todos los valores que hacen que el radicando sea mayor o igual que cero.
Funciones trascendentes
En las funciones trascendentes la variable independiente figura como exponente, o como índice de la raíz, o se halla afectada del signo logaritmo o de cualquiera de los signos que emplea la trigonometría.
Función exponencial
Sea a un número real positivo. La función que a cada número real x le hace corresponder la potencia ax se llama función exponencial de base a y exponente x.
Funciones logarítmicas
La función logarítmica en base a es la función inversa de la exponencial en base a.
buen trabajo
ResponderEliminargracias me fue muy útil la información
ResponderEliminarMuy eficiente la información
ResponderEliminarMuchas gracias me sirvió de mucho
ResponderEliminarFuente?
ResponderEliminar